七个海洋潮汐模式在浙江海域的准确度评估

赵 强1,2,侯国锋1,汤志华1,舒志光1

(1. 国家海洋局 宁波海洋环境监测中心站,浙江 宁波 315012;2. 卫星海洋环境动力学国家重点实验室,浙江 杭州 310012)

摘 要:利用浙江近岸 33 个潮位站的 8 个主要分潮(M_2 , S_2 , N_2 , K_2 , K_1 , O_1 , P_1 和 Q_1)的调和常数和潮高, 对7 个全 球/区域潮汐模式(CSR4.0, FES2012, HAMTIDE11a, TPXO7.2, TPXO8-atlas, TPXO-CSI2016 和 NAO99Jb)的准 确度进行了评估。以 M_2 分潮的潮高均方根误差大小为标准, 评估结果显示 FES2012 模式在浙江近海的准确度相 对较高, 33 个潮位站平均的 M_2 分潮潮高均方根误差为 22.12 cm。各模式在杭州湾和瓯江 4 个测站的准确度普遍 较低, 多模式平均的 M_2 分潮潮高均方根误差都超过 70 cm。若不考虑上述 4 个测站, TPXO8-atlas 模式的准确度 最高, 29 个潮位站平均的 M_2 分潮潮高均方根误差为 16.38 cm。综合来看, FES2012 和 TPXO8-atlas 在浙江近海的 准确度较高, 可根据实际研究区域和分潮加以选择。

关键词:潮汐模式;准确度评估;TPXO;NAO99;FES2012

中图分类号:P731.23 **文献标识码:**A **文章编号:**1671-6647(2018)02-0310-11

doi:10.3969/j.issn.1671-6647.2018.02.016

20世纪90年代以来,随着以TOPEX/Poseidon(以下简称T/P)、Jason等为代表的卫星高度计资料的 广泛应用,大洋潮汐模式得到了快速发展,其准确度也有了很大提高,其中较具代表性的有美国的 TPXO^[1],CSR^[2],GOT^[3],日本的NAO^[4],法国的FES^[5],德国的EOT^[6]和HAMTIDE^[7]等。这些模式大 都基于水动力学方程组,并将卫星高度计资料和验潮站资料同化到模式中。模式的结果通常以公开数据集 的形式提供,研究人员可采用这些数据进行潮汐特征分析、海洋动力模型开边界建立等工作。

目前的大洋潮汐模式有几十种,这些模式的准确度在世界范围内得到了评估。Anderson 等^[8]基于全球 95 个验潮站数据,将 14 个 1994 年后出现的基于 T/P 高度计资料的全球大洋潮汐模式以及基于潮位站实测 资料的 SCW80 模式^[9]和基于 Geosat 卫星高度计的 CR91 模式^[10]进行了比较,发现基于 T/P 资料的潮汐模 式在开阔海域具有更高的精度,且对于 M₂和 K₁分潮,Schrama 等^[11]的模式与验潮站数据符合最好,对于 S₂ 和 O₁分潮,TPXO2 模式^[12]准确度最好。Shum 等^[13]对 1994 年后的 10 种大洋潮汐模式进行了评估,整体 而言,SR95.0/.1 与验潮站数据符合最好。Gladkikh 等^[14]将 TPXO7.2,GOT00.2,NAO99b,FES2004 和 EOT10a 这 5 个全球大洋潮汐模式与新西兰沿岸的 7 个验潮站资料进行了比较,发现 TPXO7.2 在新西兰沿 岸的准确度最高。汪一航等^[15]选取全球 152 个大洋验潮站观测结果对 7 个大洋潮汐模式的 8 个主要分潮 结果进行了比较验证,结果显示模式的总体准确度达到 95%,且除 SCW80 模式准确度较低外,各模式间准 确度差异不大。他们还依据中国近海 18 个岛屿验潮站的调和常数对 5 个大洋潮汐模式(NAO99b,GOT00, FES2002,FES2004 和 TPXO7)的准确度进行了比较,结果表明 NAO99b 模式在中国近海的准确度相对较 高。李大炜等^[16]利用大洋验潮站对 5 个全球海潮模型(NAO99b,FES2004, TPXO7.2,GOT4.7 和 EOT10a)进行了精度评估,结果显示在水深大于 1 000 m 的深海海域,各模式精度相当,而在水深小于 200

收稿日期:2017-01-06

资助项目:国家海洋局东海分局青年科技基金项目——海洋潮汐模式在浙北海域的准确度评估(201628);卫星海洋环境动力学国家重点 实验室开放课题——黄东海浪-流耦合模型的建立及不同耦合方式的对比分析(QNHX1724)

作者简介:赵 强(1982-),男,山东青岛人,工程师,博士,主要从事海洋动力学和生态系统的数值模拟方面研究. E-mail: zhaoqiang@eastsea. gov.cn

m 的浅海,EOT10a 的结果最优,NAO99b 的结果较不理想。而与中国近海验潮站数据比较的结果显示, NAO99b 与验潮站数据的偏差最小,TPXO7.2 较差。孙佳龙等^[17]基于中国近海 17 个验潮站数据比较了 CSR4.0 和 NAO99b 模型在中国海域精度,以水位时间序列的差值为标准,他们认为 CSR4.0 优于 NAO99b, 以分潮潮高误差为标准,NAO99b 优于 CSR4.0。高秀敏等^[18]采用南海海域 60 个验潮站和 22 个 T/P 高度 计轨道交叉点的调和常数资料,对比了 4 种大洋潮汐模式(TPXO7.2,GOT00.2,NAO99b 和 DTU10^[19])的 准确度,发现 DTU10 在南海准确度最高。雷宁等^[20]的研究结果也显示,在南海浅海海域,DTU10 模式的 结果与验潮站数据较为符合。

传统全球潮汐模式的空间分辨率较低,且受海洋动力和陆地反射的影响,一般基于卫星高度计数据建立 的海洋潮汐模型在浅海海域存在较大的误差^[8,13,15-16,20]。然而随着观测和技术发展,潮汐模式可同化的观测 点数量越来越多,高度计资料的时间序列越来越长,模式的空间分辨率也得到了提高,出现了一些高分辨率 的区域模式,这些最新的潮汐模式在近岸的结果值得重新评估。

本文选取了 7 个全球/区域潮汐模式,利用通过《潮汐表》^[21]调和分析得到的浙江近海 33 个潮位站的调 和常数对这些模式的准确度进行了评估。

1 模式介绍

本文选择5个全球潮汐模式和2个区域潮汐模式进行准确度评估(表1)。

TPXO 模式是由美国俄勒冈州立大学(Oregon State University,OSU)建立的潮汐模式。该模式基于 Laplace 潮汐方程,采用最小二乘法,同化了 T/P,Jason 卫星高度计资料^[1]。目前最新版本为 TPXO8-atlas v1,该版本融合了区域潮汐模式的结果,提供了 8 个主要分潮(M_2 , S_2 , N_2 , K_2 , K_1 , O_1 , P_1 和 Q_1)、2 个长周期 分潮(M_f , M_m)和 3 个浅水分潮(M_4 , MS_4 , MN_4)的潮位、潮流通量信息。其中, M_2 , S_2 , N_2 , K_2 , K_1 , O_1 , P_1 , Q_1 和 M_4 的空间分辨率为(1/30)°, M_f , M_m , MS_4 和 MN_4 的分辨率为(1/6)°。China Seas & Indonesia 2016 (以下简称 TPXO-CSI2016)为 OSU 提供的区域模式结果,范围为(95°~155°E,30°S ~42°N),分辨率为 (1/30)°,仅包括 8 个主要分潮,不包括长周期分潮和浅水分潮;TPXO7.2 为未融合区域潮汐模式的版本,分 辨率为(1/4)°,我们将这三个版本的模式结果纳入比较。

CSR4.0 是由美国空间飞行研究中心(Center for Space Research, CSR)基于经验算法建立的第二代大 洋潮汐模式^[2],基于 T/P 高度计资料,提供 16 个短周期分潮(M₂, S₂, N₂, K₂, 2N₂, Mu₂, Nu₂, L₂, T₂, K₁, O₁, P₁, Q₁, M₁, J₁和 OO₁)的潮汐数据, 分辨率为(1/2)°。

NAO99Jb 由日本国立天文观测台(National Astronomical Observatory, NAO)开发的针对日本周边海域的区域潮汐模式^[4],模式范围(110°~155°E, 20°~65°N)。该模式同化了大约5a的T/P卫星高度计资料和日本周边的验潮站数据,提供16个短周期分潮(M_2 , S_2 , N_2 , K_2 , K_1 , O_1 , P_1 , Q_1 , M_1 , J_1 , OO_1 , $2N_2$, Mu_2 , Nu_2 , L_2 和 T_2)和7个长周期分潮(M_{tm} , M_f , MS_f , M_m , MS_m , S_{sa} 和 S_a)的潮位信息。其中短周期分潮的分辨率为(1/2)°, 长周期分潮的分辨率为(1/2)°。

FES2012 是由法国潮汐工作组(the French Tidal Group)开发的全球有限元大洋潮汐模式(Finite Element Solution)的最新版本^[5]。该模式同化了 T/P,Jason-1,Jason-2,ERS-1,ERS-2 和 Envisat 等卫星的高度计资料,提供 32 个分潮(M_2 , S_2 , N_2 , K_2 , K_1 , O_1 , P_1 , Q_1 , S_1 , J_1 , $2N_2$, Mu_2 , Nu_2 , L_2 , T_2 , E_2 , R_2 , La_2 , MKS_2 , M_{tm} , M_f , MS_f , M_m , S_{sa} , M_3 , M_4 , MN_4 , N_4 , S_4 , M_6 , MS_4 和 M_8)的潮位和潮流信息,模式结果的分辨率为 (1/16)°。

HAMTIDE11a 是由德国汉堡大学海洋研究所(Institut für Meereskunde, University Hamburg)建立 的全球潮汐模式^[7],模式同化了 15 a 的 TOPEX 和 Jason-1 卫星高度计资料,包括 8 个主要分潮(M_2 , S_2 , N_2 , K_1 , O_1 , P_1 和 Q_1)的潮汐、潮流信息,分辨率为(1/8)°。 表1 全球/区域海洋潮汐模型

	Table 1 Global,	/regional ocean tide models	
模型	分潮数	主要分潮分辨率	范 围
CSR4.0	16	(1/2)°	全球
FES2012	32	(1/16)°	全球
HAMTIDE11a	8	(1/8)°	全球
TPXO7.2	13	(1/4)°	全球
TPXO8-atlas	13	(1/30)°	全球
TPXO-CSI2016	8	(1/30)°	$(95^{\circ} \sim 155^{\circ} \text{E}, 30^{\circ} \text{S} \sim 42^{\circ} \text{N})$
NAO99Jb	23	(1/12)°	(110°~155°E,20°~65°N)

2 潮汐模式在浙江近海的准确度评估

2.1 评估方法

通常以某一分潮的计算值与观测值的偏差来评估潮汐模式的准确度。偏差的计算有 2 种方式,一种是 通过计算调和常数,考察经模式结果获得与经观测值获得的振幅之间和迟角之间的偏差,即对某一特定分 潮有:

$$\Delta H = \frac{1}{N} \sum_{n=1}^{N} |H_{\text{sim},n} - H_{\text{obs},n}|, \qquad (1)$$

$$\Delta g = \frac{1}{N} \sum_{n=1}^{N} |g_{\text{sim},n} - g_{\text{obs},n}|, \qquad (2)$$

式中,H 为振幅,g 为迟角,下标 sim 和 obs 分别代表经由模式结果获得与经由观测值获得;n 为站位数, n=1,2,…,N。另一种方法通过分潮调和常数计算分潮潮高,考察经模式结果获得与经观测值获得的分 潮潮高之间的偏差。对某一特定分潮,潮高为

$$h_n = H_n \cos(\omega t - g_n), \qquad (3)$$

式中,t为时间,ω为角速率。分潮潮高的均方根值为

$$\eta_n = \left\{ \lim_{T \to \infty} \frac{1}{T} \int_0^T \left[H_n \cos(\omega t - g_n) \right]^2 \mathrm{d}t \right\}^{1/2} = \frac{1}{\sqrt{2}} H_n \,. \tag{4}$$

经模式结果获得与经观测值获得的分潮潮高的均方根误差为

$$\sigma_{n} = \left\{ \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left[H_{\sin,n} \cos(\omega t - g_{\sin,n}) - H_{obs,n} \cos(\omega t - g_{obs,n}) \right]^{2} dt \right\}^{1/2} = \frac{1}{2} \left[(H_{\sin,n} \cos g_{\sin,n} - H_{obs,n} \cos g_{obs,n})^{2} + (H_{\sin,n} \sin g_{\sin,n} - H_{obs,n} \sin g_{obs,n})^{2} \right] \right\}^{1/2}$$
(5)

对于 N 个站位,其相应的平均值分别为

$$\eta = \frac{1}{N} \sum_{n=1}^{N} \eta_n , \qquad (6)$$

$$\sigma = \frac{1}{N} \sum_{n=1}^{N} \sigma_n , \qquad (7)$$

相对误差则表示为

$$r = \frac{\sigma}{\eta} \,. \tag{8}$$

一般认为,前一种方法计算简单,但需同时考虑振幅误差和迟角误差两个变量的准确度,且在分潮振幅 较小时容易高估迟角误差对准确度的影响,故较难合理地制定评估标准;后一种方法计算稍显复杂,但只需 对潮高误差这一个变量进行评价,故更适合用于准确度评估^[13-14]。

2.2 评估结果

由于实测潮位数据除了包含潮汐信息外,还包含天气系统尺度的增水信息,如台风风暴潮、温带风暴潮 等,因此本文采用 2014 年《潮汐表》^[21]中提供的潮位资料用于计算 8 个主要分潮(M₂,S₂,N₂,K₂,K₁,O₁,P₁ 和 Q₁)的调和常数。《潮汐表》由国家海洋信息中心编制,用于指导各地方海洋台站的潮汐预报,具有一定的 权威性。同时,我们也对岱山、六横岛、沈家门、嵊山、石浦和镇海六个潮位站 2014 年的实测潮位数据进行了 调和分析,结果与通过《潮汐表》资料计算得到的调和常数进行了对比,多站平均的分潮振幅误差和平均迟角 误差如表 2 所示,分潮振幅和迟角的平均差值分别为 0.5 cm 和 2.13°,差异很小。本文选用的浙江近海 33 个潮位站名称和位置如图 1 所示。

表 2 通过潮位站实测数据和《潮汐表》资料分别计算的多站平均的分潮振幅差(ΔH)和迟角差(Δg)

Cable 2	The ΔH	and Δ	Δg	(averaged	over (6 statio	ns)	of 8	tidal	constituents	between o	observation and	Tide	Tal	bles
---------	----------------	--------------	------------	-----------	--------	----------	-----	------	-------	--------------	-----------	-----------------	------	-----	------

潮汐参数	M_2	S_2	N_2	K_2	K_1	O_1	\mathbf{P}_1	\mathbf{Q}_1	平 均
$\Delta H/{ m cm}$	1.55	0.61	0.68	0.38	0.14	0.37	0.18	0.11	0.50
$\Delta g /^{\circ}$	0.86	0.84	1.84	1.54	0.59	0.70	2.75	7.88	2.13

7 个潮汐模式多站平均的分潮的振幅误差、迟 角误差、潮高均方根误差和潮高相对误差如表 3 所 示。从计算结果看,各潮汐模式在浙江近岸的平均 误差普遍较大, M_2 分潮的振幅误差为 18.25~47.78 cm,迟角误差为 9.72°~31.52°,潮高均方根误差为 22.12~58.08 cm,潮高相对误差为 0.23~0.58; S₂分 潮的振幅误差为 8.28~20.38 cm,迟角误差为 10.71° ~29.14°,潮高均方根误差为 9.83~21.77 cm,潮高 相对误差为 0.26~0.59; K₁分潮的振幅误差为 1.72 ~8.04 cm,迟角误差为 6.25°~16.09°,潮高均方根 误差为 2.72~7.45 cm,潮高相对误差为 0.13~0.35; O₁分潮的振幅误差为 1.46~5.42 cm,迟角误差为 4.92°~28.16°,潮高均方根误差为 1.79~5.78 cm,潮 高相对误差为 0.13~0.38。

以潮高均方根误差为标准,FES2012 的各分潮 误差在 7 个模式中全部都为最小;以相对误差为标 准,FES2012 的 M_2 , K_1 , O_1 , P_1 和 Q_1 这 5 个分潮的准 确度最高,TPXO8-atlas 的 S_2 , N_2 和 K_2 这 3 个分潮 的准确度最高。综上所述,与潮位站资料吻合最好 的为 FES2012 全球模式,虽然其分辨率为(1/16)°, 但整体计算结果优于 TPXO8-atlas 和 TPXO-CSI2016 这 2 个(1/30)°的更高分辨率模式,也优于

NAO99Jb 区域模式。NAO99Jb 的 K1分潮的准确度仅次于 FES2012,但其他分潮的准确度略低于 TPXO8-

atlas。TPXO8-atlas 全球模式的准确度略高于 TPXO-CSI2016 区域模式,二者在除 K₁分潮外的 7 个分潮的 准确度都优于低分辨率的 TPXO7.2。HAMTIDE11a 和 CSR4.0 的在浙江近海的准确度最差。

模式	分 潮	$\Delta H/{ m cm}$	$\Delta g /^{\circ}$	$\sigma/{ m cm}$	r	模式	分 潮	$\Delta H/\mathrm{cm}$	$\Delta g /^{\circ}$	$\sigma/{ m cm}$	r
	M_2	47.78	31.52	58.08	0.58		\mathbf{K}_1	8.04	16.09	7.45	0.35
CSP4 0	S_2	19.85	26.08	21.76	0.59	CSP4 0	O_1	4.96	28.16	4.73	0.33
0.514.0	N_2	9.17	31.86	10.28	0.61	0.514.0	\mathbf{P}_1	2.12	15.96	2.16	0.38
	K_2	6.06	25.54	5.89	0.53		\mathbf{Q}_1	1.02	24.07	0.94	0.37
	M_2	18.25	9.72	22.12	0.23		\mathbf{K}_1	1.72	6.25	2.72	0.13
FES2012	S_2	8.28	10.71	9.83	0.28	EES2012	O_1	1.46	4.92	1.79	0.13
	N_2	4.66	15.47	4.90	0.30	FE32012	\mathbf{P}_1	0.82	6.43	1.03	0.19
	K_2	2.31	12.94	3.04	0.29		\mathbf{Q}_1	0.49	8.08	0.61	0.25
	M_2	45.43	20.88	47.21	0.46		\mathbf{K}_1	6.52	8.40	5.61	0.26
	S_2	20.38	29.14	21.77	0.57	UA MTIDE11	O_1	5.42	22.60	5.40	0.38
ITAMTIDEITa	N_2	9.07	30.73	10.35	0.59	HAMIIDEIIa	\mathbf{P}_1	2.14	33.55	3.07	0.53
	K_2	6.35	38.48	6.67	0.61		\mathbf{Q}_1	1.04	29.60	0.99	0.39
TENOS	M_2	30.22	17.67	37.21	0.34	TPXO7.2	\mathbf{K}_1	2.65	9.89	4.14	0.20
	S_2	12.26	16.21	13.58	0.33		O_1	2.05	22.04	5.78	0.41
117A07.2	N_2	5.24	19.69	6.79	0.38		\mathbf{P}_1	1.18	9.53	1.40	0.26
	K_2	2.50	23.94	4.80	0.40		\mathbf{Q}_1	1.46	8.89	1.09	0.43
	M_2	26.98	11.71	28.06	0.25		K_1	4.31	12.61	5.19	0.24
TRYON	S_2	9.84	11.93	10.71	0.26	TDYON	O_1	1.80	10.19	2.77	0.19
TPX08-atlas	N_2	4.33	12.66	5.20	0.26	TPXO8-atlas	\mathbf{P}_1	0.87	9.26	1.17	0.21
	K_2	2.64	11.72	3.04	0.26		\mathbf{Q}_1	0.89	10.30	0.80	0.32
	M_2	26.53	13.37	31.40	0.27		\mathbf{K}_1	4.19	13.78	5.50	0.26
TDYO COMOLO	S_2	9.95	13.07	11.74	0.28	TDVO CEI2016	O_1	1.69	10.85	2.95	0.21
1PAU-CSI2016	N_2	4.27	14.37	5.96	0.30	1PAU-CSI2016	\mathbf{P}_1	0.89	9.63	1.25	0.22
	K_2	2.63	13.65	3.52	0.30		\mathbf{Q}_1	0.87	9.91	0.78	0.31
	M_2	22.62	13.53	29.17	0.34		\mathbf{K}_1	2.81	10.44	4.66	0.22
MACCOUL	S_2	14.76	19.44	18.51	0.58	NACCOUL	O_1	2.59	6.50	2.71	0.19
NAO99Jb	N_2	9.01	42.30	10.00	0.65	NAO99Jb	\mathbf{P}_1	2.05	13.85	2.26	0.41
	K_2	8.21	25.21	8.69	0.92		\mathbf{Q}_1	1.27	20.19	1.32	0.54

表 3 各潮汐模式多站平均的分潮的振幅误差(ΔH)、迟角误差(Δg)、潮高均方根误差(σ)和潮高相对误差(r) Table 3 The ΔH , Δg , σ and r (averaged over 33 stations) of 8 tidal constituents between model and observation

图 2 为多模式平均的 M_2 分潮潮高均方根误差在 33 个潮位站的分布,其他各分潮的误差空间分布与 M_2 分潮相似。总体上看,距离浙江岸线越远,潮汐模式的误差越小。各潮汐模式在杭州湾海域的误差普遍较大,在澉浦站和乍浦站的 M_2 分潮的平均潮高均方根误差都超过了 100 cm,分别达到 160.54 和 131.18 cm; 在滩浒站的 M_2 分潮的平均潮高均方根误差为 82.66 cm。温州站位于瓯江上游,各模式在该站的误差也较大, M_2 分潮的平均潮高均方根误差为 72.05 cm。不统计各潮汐模式在上述 4 个潮位站的误差,重新计算各 潮汐模式 8 个主要分潮的潮高均方根误差,其在 29 个潮位站间的平均值如表 4 所示。此时,TPXO8-atlas 模式的 M_2 , S_2 , N_2 , K_2 和 P_1 分潮的潮高均方根误差在 7 个模式中最小,而 FES2012 模式的 K_1 , O_1 和 Q_1 分潮 的潮高均方根误差在各模式间最小。

描 十	分潮									
侠工	M ₂	S_2	N_2	K_2	K_1	O_1	P_1	\mathbf{Q}_1		
CSR4.0	42.88	17.21	7.91	4.69	5.14	3.33	1.51	0.71		
FES2012	16.64	7.42	3.76	2.34	2.06	1.41	0.95	0.47		
HAMTIDE11a	37.31	18.35	8.90	5.69	4.31	4.33	2.74	0.82		
TPXO7.2	20.26	9.50	5.05	2.80	3.26	4.63	1.29	1.01		
TPXO8-atlas	16.38	6.72	3.38	1.90	3.75	1.84	0.77	0.67		
TPXO-CSI2016	20.17	7.86	4.25	2.44	4.12	2.03	0.85	0.65		
NAO99Jb	25.62	15.08	7.16	5.97	3.09	1.93	1.67	1.06		

表 4 不考虑 4 个误差较大的潮位站时,8 个各潮汐模式多站平均的分潮潮高均方根误差(cm) Table 4 The σ (cm) of 8 tidal constituents averaged over 29 stations

浙江沿岸属于强潮海区,且岸线曲折,地形 复杂,目前各大洋潮汐模式的精度在这一海域 与高分辨率的小区域模式[22]相比仍有一定差 距,李大炜等[16]认为水动力环境复杂、陆地反射 影响、测高卫星地面轨迹空间分布、未同化我国 沿海验潮站资料等是大洋潮汐模型在我国近海 海域精度较差的原因。但是可以看到,较新的 潮汐模型与较早的潮汐模型相比,精度有了进 一步提高。在以往的对比评估中,通常认为 NAO99Jb模式在中国近海具有最高的准确 度[15-17],但在本文的评估中,其在浙江近岸的准 确度明显低于 FES2012, TPXO8-atlas 和 TPXO-CSI2016 这3种较新的模式。这3种模 式的的空间分辨率都比 NAO99Jb 高,且同化了 T/P, Jason, ERS 和 Envisat 等多源多代卫星高 度计的资料,同化资料的时间序列长度也比 NAO99Jb长。

在每个潮位站,选取 7 个潮汐模型中 4 个 主要分潮(M_2 , S_2 , K_1 和 O_1)潮高均方根误差最 小的模式列于图 3,并统计其在 33 个潮位站中 出现的站位个数列于表 5。对于 M_2 分潮, TPXO7.2 误差最小的潮位站数量最多,为 8 个;

Fig.2 The averaged σ of M_2 of 7 models at the 33 stations

其次为 TPXO8-atlas 和 TPXO-CSI2016,站位数都为 7 个;再次为 FES2012 和 NAO99Jb,站位数都为 5 个。 对于 S₂,K₁和 O₁分潮,FES2012 模式误差最小的潮位站数量都超过 10 个,显著多于其他潮汐模式,其次为 TPXO8-atlas 和 TPXO7.2。

表 5 图 3 中各模式出现的次数

Table 5The number of occurrence of each model in Fig.3										
	 分 潮									
侯工	M_2	S_2	\mathbf{K}_1	O_1						
CSR4.0	1	2	1	7						
FES2012	5	12	19	10						
HAMTIDE11a	0	2	3	1						
TPXO7.2	8	5	3	5						
TPXO8-atlas	7	8	4	4						
TPXO-CSI2016	7	4	0	3						
NAO99Jb	5	0	3	3						

此外,我们也将各潮汐模式结果与浙江外海的卫星高度计产品进行了比较。卫星高度计产品由 CTOH/LEGOS提供,是利用1993—2016年间T/P,Jason-1和Jason-2卫星高度计资料提取的潮汐调和常 数产品。本文选用了(121°~124°E,27°~31°N)区域范围内的产品进行了比较,结果如表6所示。从结果可 以看出,相较于近岸,各潮汐模式在浙江外海的准确度更高。以M₂分潮为例,准确度最高的模式依然是 FES2012,平均潮高均方根误差仅为1.31 cm,平均潮高相对误差为2%,其次为TPXO-CSI2016和TPXO8atlas,准确度最低的为CSR4.0,这与在近岸的评估结果基本一致。各模式Q₁分潮的准确度都相对较低,平 均潮高相对误差都超过20%。

模式	分 潮	$\Delta H/{ m cm}$	$\Delta g / \circ$	$\sigma/{ m cm}$	r	模式	分潮	$\Delta H/{ m cm}$	$\Delta g /^{\circ}$	$\sigma/{ m cm}$	r
	M_2	5.50	8.59	10.52	0.12		K_1	2.14	1.39	1.60	0.08
CSR4.0	S_2	2.37	2.69	2.53	0.07	CSD4 0	O_1	0.68	3.45	0.96	0.08
	N_2	1.84	35.90	1.98	0.12	0.5K4.0	\mathbf{P}_1	0.43	3.35	0.52	0.09
	K_2	1.16	7.08	1.64	0.17		\mathbf{Q}_1	0.53	8.07	0.53	0.22
FES2012	M_2	1.18	0.62	1.31	0.02		K_1	1.18	1.81	1.08	0.06
	S_2	0.86	0.94	0.92	0.03	FES2012	O_1	0.36	1.06	0.39	0.03
	N_2	0.62	7.40	0.68	0.04		\mathbf{P}_1	0.37	3.90	0.54	0.09
	K_2	0.77	1.68	0.67	0.07		\mathbf{Q}_1	0.51	8.76	0.55	0.26
	M_2	2.33	2.97	3.18	0.04		K_1	1.16	0.80	0.89	0.05
UAMTIDE11.	S_2	7.21	3.86	5.74	0.16	UAMTIDE11.	O_1	0.52	2.75	0.76	0.06
namindenia	N_2	1.33	26.11	1.39	0.09	TAMIIDEIIa	\mathbf{P}_1	0.88	9.36	1.12	0.19
	K_2	3.44	6.42	2.65	0.27		\mathbf{Q}_1	0.46	8.66	0.47	0.20
	M_2	3.05	4.40	3.85	0.05		K_1	0.58	1.92	0.83	0.04
TDVO7 9	S_2	1.33	1.90	1.75	0.05	TPXO7.2	O_1	0.80	2.06	0.78	0.06
1PX07.2	N_2	0.76	13.29	0.99	0.06		\mathbf{P}_1	0.39	4.49	0.57	0.10
	K_2	0.51	2.61	0.62	0.06		\mathbf{Q}_1	0.67	9.79	0.62	0.25

表 6 与卫星高度计相比,8个潮汐模式的分潮振幅误差(ΔH)、迟角误差(Δg)、潮高均方根误差(σ)和潮高相对误差(r) Table 6 The averaged ΔH , Δg , σ and r of the 8 tidal constituents between model and altimetry data

续表

模式	分 潮	$\Delta H/{ m cm}$	$\Delta g /^{\circ}$	$\sigma/{ m cm}$	r	模式	分 潮	$\Delta H/{ m cm}$	$\Delta g /^{\circ}$	$\sigma/{ m cm}$	r
TPXO8-atlas	M_2	0.56	0.92	1.54	0.02		\mathbf{K}_1	0.98	1.14	0.84	0.04
	S_2	0.49	0.65	0.61	0.02		O_1	0.29	1.27	0.39	0.03
	N_2	0.58	8.28	0.60	0.04	IFA06-attas	\mathbf{P}_1	0.39	3.80	0.50	0.08
	K_2	0.49	2.57	0.63	0.06		\mathbf{Q}_1	0.51	8.93	0.50	0.20
	M_2	0.57	0.92	1.52	0.02		K_1	0.98	1.13	0.83	0.04
	S_2	0.50	0.63	0.60	0.02	TDYO CEL9016	O_1	0.29	1.28	0.39	0.03
1PAO-CSI2016	N_2	0.58	8.28	0.59	0.04	1PAU-CS12016	\mathbf{P}_1	0.39	3.80	0.50	0.08
	K_2	0.49	2.55	0.63	0.06		\mathbf{Q}_1	0.51	8.92	0.50	0.20
	M_2	1.44	3.52	2.04	0.02		\mathbf{K}_1	0.87	1.90	0.94	0.05
NACOOUL	S_2	0.75	0.75	0.80	0.02	NACOOUL	O_1	0.80	1.52	0.75	0.06
NAO99Jb	N_2	1.20	15.68	1.22	0.07	NAO99Jb	\mathbf{P}_1	0.41	4.07	0.56	0.10
	K_2	0.63	1.59	0.58	0.06		\mathbf{Q}_1	0.54	11.05	0.66	0.31

3 结 语

本文利用浙江近岸 33 个潮位站的 8 个主要分潮(M_2 , S_2 , N_2 , K_2 , K_1 , O_1 , P_1 和 Q_1)的调和常数和潮高, 对 7 个全球/区域潮汐模式的准确度进行了评估,结果显示各潮汐模式在浙江近海的误差仍然较大。其中, FES2012 和 TPXO8-atlas 的准确度相对较高,33 个潮位站平均的 M_2 分潮潮高均方根误差分别为 22.12 和 28.06 cm,剔除 4 个误差较大的潮位站后,这两个模式 29 个潮位站平均的 M_2 分潮潮高均方根误差分别减小 到 16.38 和 16.64 cm。从各潮汐模式 4 个主要分潮(M_2 , S_2 , K_1 和 O_1)潮高均方根误差最小的潮位站个数来 看,对 M_2 分潮, TPXO7.2, TPXO8-atlas 和 TPXO-CSI2016 误差最小的潮位站数量较多;对其它分潮, FES2012 误差最小的潮位站数量显著多于其它潮汐模式。FES2012, TPXO8-atlas, TPXO-CSI2016 和 TPXO7.2 在浙江近海的准确度皆优于 NAO99Jb,而后者在诸多前人的研究中被认为其在东海近海的准确 度较优^[15-17],可见随着模式空间分辨率的提升和同化数据的增多,较新的模式与较早的模式相比,准确度得 到了进一步提高。总的来说,FES2012 和 TPXO8-atlas 在浙江近海的准确度较高,可根据实际研究区域加 以选择。从结果看,各模式各分潮的准确度在不同区域有所差别,在下一步的工作中,我们将根据评估结果 尝试将多个潮汐模式进行融合,形成一组在浙江近海具有更高精度的潮汐数据集。

参考文献(References):

- [1] EGBERT G D, EROFEEVA S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric & Oceanic Technology, 2002, 19(2): 183-204.
- [2] EANES B R J, BETTADPUR S V. The CSR 3.0 Global Ocean Tide Model: Diurnal and semi-diurnal ocean tides from TOPEX/POSEI-DON altimetry[R]. Technical Report CRS-TM-96-05, Centre for Space Research. Texas: University of Texas, 1996.
- [3] SCHWIDERSKI E W. Ocean tides, part II: A hydrodynamical interpolation model[J]. Marine Geodesy, 2009, 3(1-4): 219-255.
- [4] MATSUMOTO K, TAKANEZAWA T, OOE M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model. A global model and a regional model around Japan[J]. Journal of Oceanography, 2000, 56(5): 567-581.
- [5] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides: modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5-6): 394-415.
- [6] SAVCENKO R, BOSCH W, DETTMERING D, et al. EOT11a-Global Empirical Ocean Tide Model from multi-mission satellite altime-

try, with links to model results[R]. Deutsches Geodätisches Forschungsinstitut, 2012.

- [7] TAGUCHI E, STAMMER D, ZAHEL W. Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4573-4592.
- [8] ANDERSEN O B, WOODWORTH P L, FLATHER R A. Intercomparison of recent ocean tide models[J]. Journal of Geophysical Research: Atmospheres, 1995, 1002(Cl2): 25261-25282.
- [9] SCHWIDERSKI E W. On charting global ocean tides[J]. Reviews of Geophysics and Space Physics, 1980, 18: 243-268.
- [10] CARTWRIGHT D E, RAY R D. Oceanic tides from Geosat altimetry[J]. Journal of Geophysical Research, 1990, 95: 3069-3090.
- [11] SCHRAMA E J O, RAY R D. A preliminary tidal analysis of TOPEX/POSEIDON altimetry[J]. Journal of Geophysical Research: Atmospheres: Oceans, 1994, 99(C12): 24799-24808.
- [12] EGBERT G D, BENNETT A F, FOREMAN M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of Geophysical Research, 1994, 99(C12): 24821-24852.
- [13] SHUM C K, WOODWORTH P L, ANDERSEN O B, et al. Accuracy assessment of recent ocean tide models[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25173-25194.
- [14] GLADKIKH V, TENZER R. A comparison of model estimates of ocean-tide loading displacements in New Zealand[J]. Journal of Geodetic Science, 2011, 1(2):94-113.
- [15] WANG Y H, FANG G H, WEI Z X, et al. Accuracy assessment of global ocean tide models base on satellite altimetry[J]. Advances in Marine Science, 2010, 25(4): 353-359. 汪一航, 方国洪, 魏泽勋, 等. 基于卫星高度计的全球大洋潮汐模式的准确度评估 [J]. 地球科 学进展, 2010, 25(4): 353-359.
- [16] LI D W, LI J C, JIN T Y, et al. Accuracy estimation of recent global ocean tide models using tide gauge data[J]. Journal of Geodesy and Geodynamics, 2012, 32(4): 106-110. 李大炜, 李建成, 金涛勇, 等. 利用验潮站资料评估全球海潮模型的精度 [J]. 大地测量与地球动力学, 2012, 32(4): 106-110.
- [17] SUN J L, GUO J Y, GUO S Y, et al. Accuracy analysis of CSR4.0 and NAO.99b over China sea by tidal data[J]. Progress in Geophysics. 2013, 28(5): 2787-2795. 孙佳龙, 郭金运, 郭淑艳, 等. 基于验潮资料的 CSR4.0 模型和 NAO.99b 模型在中国海域的精度分析 [J]. 地球物理学进展, 2013, 28(5): 2787-2795.
- [18] GAO X M, WEI Z X, LV X Q, et al. Accuracy assessment of global ocean tide models in the South China Sea[J]. Advances in Marine Science, 2014, 32(1): 1-14. 高秀敏,魏泽勋, 吕咸青,等. 全球大洋潮汐模式在南海的准确度评估[J]. 海洋科学进展, 2014, 32(1): 1-14.
- [19] CHENG Y C, ANDSERSEN O B. Multimission empirical ocean tide modeling for shallow waters and polar sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11), DOI: 10.1029/2011JC007172.
- [20] LEI N, FU Y G, YANG L, et al. A method of constructing high precision tide model for shallow water in the South China Sea[J]. Advances in Marine Science, 2016, 34(3): 370-376. 雷宁, 付延光, 杨龙, 等. 一种建立南海浅海海域高精度潮汐模型方法的研究[J]. 海洋科学进展, 2016, 34(3): 370-376.
- [21] The National Marine Data and Information Service. Tide tables 2014 Vol.2 from the Changjiang River Mouth to he Taiwan Straits[M]. Beijing: China Ocean Press, 2013: 1-590. 国家海洋信息中心. 潮汐表 2014 第 2 册长江口至台湾海峡[M]. 北京:海洋出版社, 2013: 1-590.

Accuracy Assessment of Seven Numerical Models on Simulating Tides in the Coastal Area of Zhejiang

ZHAO Qiang^{1,2}, HOU Guo-feng¹, TANG Zhi-hua¹, SHU Zhi-guang¹

(1. Ningbo Marine Environment Monitoring Center, SOA, Ningbo 305012, China;

2. State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou 310012, China)

Abstract: Harmonic constants of 8 tidal constituents M_2 , S_2 , N_2 , K_2 , K_1 , O_1 , P_1 , and Q_1 derived from the observations from 33 tide-gauge stations along the coastline of Zhejiang are used to evaluate the skill of 7 global/regional ocean tide models CSR4.0, FES2012, HAMTIDE11a, TPXO7.2, TPXO8-atlas, TPXO-CSI2016, and NAO99Jb. With the root-mean-square error (σ) of M_2 amplitude taken as a criteria, comparison between the observations and model results reveals that the FES2012 are most accurate among the 7 models, and the averaged σ of M_2 simulated by FES2012 at 33 stations is 22.12 cm. Large errors are found at the 4 stations in Huangzhou Bay and Oujiang River, and the averaged σ of the 7 models at these stations all exceed 70 cm. If the 4 stations are excluded from comparison, the TPXO8-atlas has the best skill, and the averaged σ of the rest 29 stations is 16.38 cm. In general, the FES2012 and the TPXO8-atlas provide better results in the coastal area of Zhejiang.

Key words: ocean tide model; accuracy assessment; TPXO; NAO99; FES2012 Received: January 6, 2017