海洋科学进展
水下图像基于 GAN 去模糊的增强技术
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金委员会-山东省人民政府联合基金项目———基于海底地形特征的深海 AUV 同步定位与建图方法研 究 (U1806228)


Underwater Image Enhancement Technology Based on Deblur GAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于水下环境具有不稳定性,水下图像可能会出现偏色、对比度低以及运动模糊等退化现象。针对这些问题,本文提出了适用于水下图像的增强算法,其实现需要依次经过颜色恢复和去模糊这2个阶段。在第一阶段中,本文增强算法先利用高斯滤波和均值漂移对图像进行锐化;然后,通过对比图像各颜色通道的均值得到补偿值对图像颜色进行校正;最后通过线性拉伸来调整图像的对比度。在第二阶段中,采用带有残差思想的生成对抗网络(GenerativeAdversarialNetworks,GAN),利用9个连续的残差网络能够很好地提取图像中的特征,可起到消除模糊和增强图像特征的作用。利用本文算法处理水下图像时,发现本文方法不仅能去除图像模糊,而且能消除图像的色偏现象且不携带红色伪影。同时,通过对比水下图像质量度量(UnderwaterImageQualityMeasures,UIQM)和水下彩色图像质量评估(UnderwaterColorImageQualityEvaluation,UCIQE)这2项指标发现,本文算法有较好的图像处理效果。

    Abstract:

    Due to the instability of underwater environment, underwater images may have degradation phenomena such as color deviation, low color contrast and motion blur. To solve these problems, this paper proposes an enhancement algorithm for underwater images, which needs to go through two stages of color restoration and deblurring. In the first stage, gaussian filtering and mean shift are used to sharpen the image. Then,the image color is corrected by comparing the mean value of each color channel. Finally, the contrast of the image is adjusted by linear stretch. In the second stage, the Generative Adversarial Networks (GAN) with residual are used to extract the features of the image. With nine continuous residual networks, blurring effect is eliminated and image features are enhanced. When the proposed algorithm is used to process underwater images, it is found that it cannot only remove the image blur, but also eliminate the color deviation of the image without carrying red artifacts. Also, by comparing the two indexes of Underwater Image Quality Measures (UIQM) and Underwater Color Image Quality Evaluation (UCIQE), it is found that the proposed algorithm has a better image processing effect.

    参考文献
    相似文献
    引证文献
引用本文

王宏妫,史先鹏.水下图像基于 GAN 去模糊的增强技术[J].海洋科学进展,2022,40(2):342-350

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-02
  • 出版日期:
文章二维码