海洋科学进展
基于深度神经网络的海表盐度反演
CSTR:
作者:
作者单位:

作者简介:

高明(1982—),男,工程师,硕士,主要从事气象保障方面研究. E-mail:2510154793@qq.com

通讯作者:

中图分类号:

基金项目:


Sea Surface Salinity Inversion Based on DNN Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海表盐度(Sea Surface Salinity,SSS)是研究海洋对全球气候影响的重要参量,欧洲航天局(European Space Agency,ESA)设计研发的SMOS(Soil Moisture and Ocean Salinity)是专用于探测海水盐度的卫星之一。受射频干扰(Radio Frequency Interference, RFI)等因素的影响,SMOS卫星盐度产品的精度难以达到预期效果。为了提高SMOS卫星海表盐度产品精度,本文提出一种基于深度神经网络的海表盐度反演算法。以太平洋中部海域(150°E~180°,5°~30°N)为研究区域,利用Argo浮标实测盐度数据为参考真值,将SMOS卫星L1C、L2级产品与Argo盐度数据进行时空匹配。并根据海洋遥感和辐射传输理论,选取亮温(Brightness Temperature,TB)、海表温度(Sea Surface Temperature,SST)、降雨率(Rain Rate,RR)、波高(Significant Wave Height,SWH)、纬向风速(Zonal Wind Speed,ZWS)、经向风速(Meridional Wind Speed,MWS)和蒸发量(Evaporation,Eva)七个影响盐度的重要参数,利用K折交叉验证法,构建了深度神经网络(Deep Neural Network, DNN)模型,对SMOS卫星L2级数据进行反演。实验结果表明,利用本文算法计算得到的海表盐度数据平均绝对误差为0.159,均方根误差为0.195,均明显优于SMOS盐度产品精度,本文提出的算法能够提供更精准的海表盐度产品。

    Abstract:

    Sea Surface Salinity is an important parameter to learn oceans ’ impact on the global climate. SMOS (Soil Moisture and Ocean Salinity) developed by the European Space Agency is one of the satellites dedicated to measuring ocean salinity. However, due to influences like Radio Frequency Interference (RFI), the accuracy of SMOS salinity products hardly achieve the expected results. In order to improve the accuracy of the sea surface salinity products, a deep neural network based sea surface salinity retrieval algorithm is proposed in this paper. The experiment takes the central Pacific Ocean (150°E—180°, 5°—30°N) as the research area, using the Argo measured salinity data as the reference. First, SMOS L1C and L2 level products are matched in time and space with the Argo salinity data. Then, according to the ocean remote sensing and radiative transfer theory, seven parameters that affect ocean salinity are selected, including Brightness Temperature (TB), Sea Surface Temperature (SST), Rainfall Rate (RR), Significant Wave Height (SWH), Zonal Wind Speed (ZWS), Meridional Wind Speed (MWS) and Evaporation (Eva). The DNN (Deep Neural Network) is developed and optimized with the K-fold cross-validation method. And the sea surface salinity data is retrieved using Argo salinity as the ground-truth. The experiments show that the mean absolute error of the sea surface salinity data obtained by the algorithm proposed in this paper is 0.159, and the root mean square error is 0.195, which are better than the accuracy of SMOS salinity products.

    参考文献
    相似文献
    引证文献
引用本文

高明, 黄贤源, 王芳, 张海龙, 赵红霞, 高溪远.基于深度神经网络的海表盐度反演[J].海洋科学进展,2022,40(3):496-504

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-01
  • 出版日期: 2022-07-15
文章二维码