海洋科学进展
基于简缩极化SAR的溢油检测与分类方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP753

基金项目:

国家重点研发计划——(2017YFC1405300);国家自然科学基金项目——基于无人机紫外与SAR的溢油遥感监测方法研究(41706208)


Oil Spill Detection and Classification Method Based on Compact Polarization SAR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对简缩极化SAR在海上溢油的检测与分类应用开展研究,利用欧式距离全面分析了简缩极化SAR的36种极化特征在溢油检测与油膜分类中的性能,发现简缩极化特征中的奇次散射系数的溢油检测性能最好,简缩极化熵的疑似溢油鉴别性能最好。在此基础上,提出了结合二叉树原理的简缩极化SAR溢油检测与油膜分类算法,并分析了RADARSAT-2和SIR-C全极化溢油数据模拟的简缩极化数据。结果表明,此方法对溢油的检测精度可达95.67%,对于疑似溢油的识别精度可达95.71%,证明了简缩极化SAR在溢油检测与分类中具有较好的应用前景。

    Abstract:

    The application of compact polarization SAR in the detection and classification of oil spill was analyzed in this study. First, we perfomed a comprehensive analysis of the performance of 36 features of compact polarization SAR in oil spill detection and classification by using Euclidean distance, and found that the odd-order scattering coefficient had best performance on oil spill detection, and the compact polarization entropy achieved better performance on oil spill lookalikes identification. Then, we proposed a compact polarization SAR oil spill detection and classification algorithm based on the binary tree idea, and the fully-polarimetric data of RADARSAT-2 and SIR-C were used to reconstruct the reduced polarized data and experiments. Results showed that the detection accuracy of oil spill detection is 95.67%, and the identification accuracy of oil spill lookalikes can reach 95.71%, which is 2% higher than the classic Wishart supervised classification method, indicating that the compact polarization SAR has a better application prospect in oil spill detection and classification.

    参考文献
    相似文献
    引证文献
引用本文

舒思京,孟俊敏,张 晰,刘根旺.基于简缩极化SAR的溢油检测与分类方法[J].海洋科学进展,2021,39(1):146-157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-25
  • 出版日期:
文章二维码